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Growth exponents with 3.99 walkers
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It is argued that the dielectric-breakdown model has an upper criticalhc equal to 4, for which the clusters
become one dimensional. A renormalization group treatment of the model is presented near the criticalh.
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I. INTRODUCTION

The model of diffusion-limited aggregation~DLA ! @1# has
presented a great challenge to theorists. The model desc
many phenomena, including viscous fingering@2#, elec-
trodeposition@3#, and dendritic growth@4#, but has also be-
come important as a theoretical problem of its own. Wh
the growth rules are simple, they are highly nonlocal a
give rise to complex branching structures that cannot be
scribed easily by any small perturbation of a smooth surfa

Despite much important recent theoretical work on
structure of DLA @5–7#, these attempts have all involve
approximations or phenomenological assumptions, witho
fully controlled expansion. In analogy to critical phenomen
we would also like ane expansion to provide a framewor
that can be systematically improved.

It is believed that DLA remains nontrivial in any finit
dimension, so an expansion about an upper critical dim
sion is not possible@8#. We turn instead to another genera
zation of DLA, the dielectric-breakdown model~DBM! @9#.
This model offers a continuously varying fractal dimensi
as a function of a parameterh, ranging from 2 ath50 to
approximately 1.7 ath51 ~DLA ! to 1 ath5`. The model
is equivalent to simultaneously releasingh random walkers
and requiring that they all hit a given point for growth
occur. As the model remains nontrivial forh→01 @10#, we
seek instead an expansion about an upper criticalhc , for
which the clusters become one dimensional. One attrac
feature of this approach will be that nearhc the clusters are
described in terms of one-dimensional branches, so tha
branching structure of DLA is inherent.

Previous numerical studies have suggestedhc54 @11#, as
well as providing some analytic explanation. A recent stu
of much larger clusters@12# also indicates a finitehc be-
tween 4 and 5. This study found significant finite size c
rections for clusters withh>4, making it problematic to
determine dimension with small clusters.

In this work we provide an analytic argument forhc54
based on branch competition, and present the lowest ord
a 42h expansion. The techniques are related to
branched growth model@6# and to singular Laplacian growt
@13#, while the way we evaluate growth processes in
long-time limit is close to the fixed-scale transformation@7#.

We proceed as follows. First we argue the equivalence
least nearh54, of the DBM to a reduced model based o
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one-dimensional branches with discrete tip-splitting even
Next, we analyze the competition of two branches and sh
that on large scales tip-splitting events proliferate forh,4,
but are suppressed forh.4. Then we consider the compe
tition of three branches~using numerical and analytical tech
niques! and show that these higher order effects suppress
tip splitting, leading to an attractive fixed point at a fini
value of the tip-splitting rate, with no relevant perturbatio
of the fixed point. We then use this fixed point to determi
fractal and multifractal dimensions and compare to numer

The renormalization group~RG! used involves expanding
simultaneously in 42h and the tip-splitting rate. A related
tip-splitting expansion to systematically extend the branch
growth model has been suggested previously@14#. We con-
sider a system with a given ratio between microscopic a
macroscopic cutoffs and evaluate the probability of vario
growth processes, to obtain corrections to the growth rat
the cluster and to the tip-splitting rate; we find that all su
quantities can be written as a sum of logarithmic correctio
to bare quantities. We then make an assumption that
logarithms may be resummed to produce power laws. T
assumption relies on the renormalizability of the model;
have no proof of renormalizability, but in the last section w
sketch how such a proof might proceed. Resummation
logarithms has been used for other nonequilibrium syste
such as Barenblatt’s equation@15#

II. REDUCED MODEL

Since we wish to have an RG in which power laws a
obtained by resummation of logarithms, it is essential to
move all irrelevant variables from the problem. We constr
such a model in two steps. First, we go from the conform
mapping model for DLA to a discrete version of the mod
Next, we go to a reduced version of the model in whi
branches have vanishing aspect ratio and grow determin
cally. The discrete model will be useful in providing a de
nition of tip-splitting events, which will provide the only
source of randomness in the reduced model.

Recall the conformal mapping formulation@18# of DLA
and the dielectric breakdown model: consider a funct
F (n)(z) that maps a straight line onto the boundary of t
growing cluster aftern growth steps. To obtainFn11, pick a
point w with probability uF (n)8(z)u12h. Define an elementary
mappingf (n11)(z) that produces a bump of linear sizeAl at
w, where, to obtain the correct bump size in the physi
plane,
©2001 The American Physical Society04-1
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M. B. HASTINGS PHYSICAL REVIEW E 64 046104
l5uF (n)8~w!u22. ~1!

Then, defineF (n11)(z)5F (n)
„f (n11)(z)….

Next, we consider a discrete version of the above mo
Each elementary mappingf has square-root singularities lo
cated a distance of orderAl from w. All points z between
these singularities are mapped onto the surface of a g
bump ~although, after further growth steps, some of the
points may be mapped onto bumps growing off the giv
bump!. In the discrete model, we will first pick a pointw as
above; then, we find the nearest square-root singularitie
each side ofw, and grow a bump at a point equidistant b
tween those singularities. This simple modification mea
that there is now a discrete set of growth sites~in any lattice
formulation of the problem, one would also find a discre
set of growth sites!.

Now, assume that the cluster has a roughly o
dimensional shape, with a tip nearz5zi ~we reserve the
index i to label different such tips!. If the branches were
precisely one dimensional, near the tips the singular beha
of F(z) would be given by

F~z!5Fi~z2zi !
2, ~2!

with Fi some constant. Due to the finite size of particles
the model,F(z) is given by a suitably regularized version
Eq. ~2! near the tip. Forh.2, the integral of the measur
uF8(z)u12h diverges for smallz, so that in the discrete mode
the probability measure will be concentrated on the o
growth site at the tip, with rapidly decaying measure on
neighboring sites. The measure on neighboring sites wil
nonuniversal and determined by the particular form of
ementary mappingf we choose, which will define a particu
lar regularization of the model.

Consider a branch that grows without splitting. While t
length of the branch increases constantly in time, the wi
remains of the order of the microscopic scale. Thus, at la
scales such a branch looks like a singular configuration w
vanishing aspect ratio. At the upper criticalh, the assump-
tion of growth without splitting will be valid at large scale
while below the upper criticalh the clusters are approxi
mately described by a collection of one-dimension
branches, implying that the aspect ratio is an irrelevant v
able near the upper criticalh. So, in constructing the reduce
model, we will take all branches with vanishing aspect ra

As the aspect ratio vanishes, all of the growth meas
becomes concentrated near the growth tip, on a scale m
less than the length of the branch. However, even though
aspect ratio vanishes, due to the discretization there is s
growth measure on sites neighboring the growth tip, a
growth may arise on any of these sites, with some nonu
versal probability. This is a tip splitting event. Below, w
will assign a tip-splitting rate, and consider how this ra
renormalizes. As we expand to higher orders in tip splitti
we include more growth configurations, so that to su
ciently high order we restore the full set of clusters found
the original model.

We now determine the growth measure for a bran
based on the proper regularization of Eq.~2!. The correct
04610
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microscopic regularization of the model is at fixed length
the physical plane, leading to a cutoff at length of ord
1/AuF8u in the z plane. Thus, the correctly regularized valu
of F8 at the growth tip is

AFi . ~3!

Numerically, one may implement this by evaluatingF8 a
short distance fromz. We note that the difference inF8
depending on regularization means that different sh
distance regularizations may imply completely differe
physical models; this may be behind some of the differen
found between diffusion-limited aggregation and Laplac
growth @19#.

Equation ~3! is different from that taken in the idea o
singular Laplacian growth@13#, and reflects the correct regu
larization of the problem in the physical plane. Similarly, t
correctly regularized growth measure at the tip, which in
discrete model is anintegral of uF8u12hdz over the region
between singularities, is

v i5
AFi

2h

(
i

AFi
2h

. ~4!

Further, we assume in constructing the reduced model tha
there is a collection of growth sites, at large scales it is va
to grow each site deterministically at a velocity proportion
to Eq. ~4!, ignoring the shot noise inherent in the discre
formulation of the model. As the branches become lo
compared to the walker scale, this assumption is valid.
the randomness in the reduced model will arise via tip sp
ting.

In what direction does a tip grow? In our model, ea
microscopic growth step is produced by a mappingf, grow-
ing the surface in thez plane normal to itself atz5zi . For a
nonsingular configuration, this grows the surface in t
physical plane normal to itself; however, the tip of a on
dimensional configuration has no normal direction, and
are forced to rely on the conformal mapping definition
growth. In the conformal mapping model, growth atzi for
time dt with velocity v i can be obtained by composingF
with a function f 5z1v idt@l/(zi2z)#. As growth
progresses, the singularitieszj move, as the point that is
mapped to a singularityj of F is f 21(zj )5zj2v idt@l/(zi
2zj )#. This leads to

] tzi5(
j Þ i

1

zi2zj
F j

21v j . ~5!

Our model of growth causes a tipzi to grow in the direction
Fi in the complex plane, but asFi may change in time the
tips may curve. This differs from the model of singular L
placian growth in which branches always grow in a straig
line, and in which there are additional terms in the motion
each tip due to growth at that tip. However, with corre
regularization in which the map functionf is chosen to pro-
duce a bump of small but finite size, one may show thazi
does not move due to growth at the tipi itself.
4-2
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GROWTH EXPONENTS WITH 3.99 WALKERS PHYSICAL REVIEW E64 046104
If the branches are straight, thenF(z) has a finite number
of singularities at branch points and growth tips. Any sing
larity z of F that is not a growth tip obeys an equation
motion

] tz5(
i

1

z2zi
Fi

21v i . ~6!

If the branches curve, additional singularities are conti
ously produced.

Thus we present the reduced model: Let the cluster
described by a mappingF(z) that produces a cluster made
one-dimensional branches, with growth tips labeled byi.
Grow each tip at a velocity given by the growth measure
Eq. ~4! multiplied by a growth velocityv.

In addition, tips split. Assign a rateg, which is an appro-
priately defined rate at which each tip has a tip-splitti
event; the definition ofg is to a certain extent arbitrary an
will be discussed more below. This rate is measured w
respect to the time integral of the growth probability meas
on the given tip, so that tips with greater growth probabil
measure split more readily. The initial conditions for the tw
daughter branches are randomly chosen, as one or an
daughter may have the majority of the growth probability.
regularization is necessary; as we show below, if the t
daughter tips are created an infinitesimal distance apart
a finite asymmetry in the initial conditions, one tip will im
mediately dominate the growth over the other. Thus, we w
need to assign a short-distance cutoff, so that the two
survive for some minimum time, or to some minimum fini
separation. In the RG we will use a particular cutoff; ho
ever, the precise form of the cutoff will not be important.

III. GEOMETRY

Throughout, we will work in cylindrical geometry in th
long-time regime. The size of the individual particles in t
original model defines a microscopic cutoff lengthl, which
will provide the minimum distance at which branch pairs a
created. The horizontal width of the cylinder in which th
cluster grows defines a macroscopic length scaleL. These
cutoffs in length are related to cutoffs in time for branch
such that the minimum time a branch exists is of orderl /v.
In cylindrical geometry, the ratio between these cutoffs
fixed and the front grows upward at constant velocity. Bel
we will expand in the number of tip-splitting events, assu
ing that the cluster is evolved for a finite timeT, so that the
average number of tip splittingsgT serves as an expansio
parameter;T must be taken infinite at the end to obtain t
long-time regime.

In radial geometry, the ratio between cutoffs is constan
changing, leading to discrepancies between different m
sures of the dimension@16#. An interesting future problem
will be to understand radial geometry in our framework, or
deal with the affine regime in cylindrical geometry@17#.

In cylindrical geometry, the intersection of the clust
with a line at constant height is a fractal with dimensionD
between 0 and 1. The cluster grows upward with veloc
v ren. As the area of the cluster increases at a constant ra
04610
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time, v ren is related to the ratio of scales and the microsco
velocity v by

v ren}v~ l /L !D. ~7!

Later, we will compare the analytic results to numerics
the DBM in radial geometry, so we must assume that a
difference due to geometry is small. This difference is sm
for DLA, roughly the difference between 1.66 and 1.71, a
we assume that we may add 1 to the dimension given by
~7! to obtain the dimension in radial geometry.

IV. COMPETITION OF TWO BRANCHES

Consider two competing branches, the first order ing in
the reduced model. We linearize near a symmetric confi
ration of the two branches. The branch shape depends on
initial conditions. However, in the long-time limit, two sym
metrically competing branches will grow straight. Phys
cally, the angle between the two branches cannot be
small due to the mutual screening effects; neither can it
too large or the branches would end up growing back tow
their parent. We will compute this angle below. If initiall
the branches are not at the given angle, they will curve
approach this angle; we have observed this curving in
merical simulations of the reduced model.

If the branches are straight in the physical plane,F is a
degenerate Schwarz-Christoffel map. We defineF(z) by its
derivative:

F8~z!5~z2y!2a1~z1y!2a1z2a2~z2x!~z1x!, ~8!

describing growth tips atz56x. We have 2a11a251. In
Fig. 1 we show the resulting configuration and relate
angles toa1 anda2.

We will use a trick to describe the dynamics of this sy
tem. The reduced model above has a specified dynamic
the motion of the growth tip singularitiesx. The model of
singular Laplacian growth, a different model, which adm
solutions with straight branches ofarbitrary opening angle,
has a different set of solutions for the motion ofx. The equa-
tions of motion of the two models match only when

FIG. 1. Competition of two branches. Opening angles are in
cated in terms ofa1.
4-3



a
l
d

d

n.
ic
o
e

in
to
u
a
in

i-

ch

p
a
e

le
-

. A
a

nal

m-

if-
tant,
be-

as-
ent

ing

c-
For

ts

ex-

n-

at
iven
e
d
n

e.

n
ill

n
p-
-

M. B. HASTINGS PHYSICAL REVIEW E 64 046104
]zS F8~z!

z6x D50, ~9!

for z57x. This use of singular Laplacian growth is simply
trick to derive the constraint~9! that a Schwarz-Christoffe
map must obey to grow straight under the reduced mo
dynamics.

If the map remains Schwarz-Christoffel, we use Eq.~5! to
find the motion ofx, as well as Eq.~6! to describe the motion
of y. We find

] tx5
1

2

1

2x
, ~10!

] ty5
1

2 S 1

y2x
1

1

y1xD , ~11!

where we normalizeFi51 for the two different tipsi 51,2.
We note that for this configurationFi is constant in time.

Requiring that] ty/] tx5y/x, we find that

y5A5x. ~12!

Requiring Eq.~9!, to obtain straight growth, we find

a151/5, a253/5, ~13!

which implies that the competing branches have a 72°
gree opening angle. In numerical simulations withh near 4
@12#, this characteristic opening angle can be clearly see

Having foundF when the two branches are symmetr
we now consider, to linear order, to competition of tw
asymmetric branches. Let the branches have growth m
suresv1 and v2. Define d5 ln F1 /F2. We will find that the
dynamics is unstable, and one of the two branches will w
as that branch wins, it will curve, until it becomes parallel
its parent. However, to linear order, we may ignore the c
vature, and assume that the map retains the Schw
Christoffel form. Above, we noted that the branches grow
the directionFi ; while the competition moves the singular
ties zi , leading to changes inFi and curvature of the
branches, Eq.~9! implies that tolinear order the motion of
singularities does not change the angle at which the bran
grow.

Equation~8! generalizes to

F8~z!5~z2y1d1!2a1~z1y1d2!2a1~z1d3!2a2~z2x

1d4!~z1x1d5!. ~14!

Assume the variousd are all small. Assuming that the ma
retains this form, one can use the equations of motion for
five singularities to determine the dynamics of the map. R
gardless of whetherv i is chosen from Eq.~4! or chosen
arbitrarily, Eqs.~5! and~6! lead to constraints on the possib
resultingd which reflect constraints following from the as
sumption that the Schwarz-Christoffel map is degenerate
a result, the competition of two branches starting from
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almost symmetric configuration occurs in a two-dimensio
parameter space, specified byd and by the overall length
scale of the branches.

After some algebra, one finds] td5(v12v2)/t2(d/t), or

] td5S h

2
21D d

t
. ~15!

The factor of 1/t arises from Eq.~10!, giving x5At/2. This
factor implies

d}th/221. ~16!

The factorth/2 in the above equation reflects the branch co
petition. The factort21, present even ath50, reflects the
fact that if both branches grow at constant velocity the d
ference in the lengths of the two branches remains cons
while the total length of each branch and the separation
tween branches increase linearly int, so that the difference in
length scaled by total length behaves ast21.

For h54, d grows linearly in time. For large enoughd,
nonlinear effects take over and one branch dies. Thus,
suming the branches are created after a tip-splitting ev
with a probability that is not singular atd50, the probability
of both branches surviving for timet is proportional to 1/t at
h54. On the other hand, the number of possible tip-splitt
events in timet is proportional tot. Thus, the probability of
creating a branch in timet that survives for timet is inde-
pendent oft. This will become more clear in the next se
tions when we consider interaction of three branches.
h.4, this probability decays for larget; on the other hand,
for h,4, this probability increases, and tip-splitting even
proliferate. Defininge542h, the lowest orderb function is

b~g!5
e

2
g. ~17!

V. RENORMALIZATION GROUP

The renormalization group is based on simultaneously
panding ing and 42h. In this section we outline how the
RG works; in the next section we will discuss the impleme
tation of the RG.

We define survival of two subbranches by requiring th
neither of the two subbranches has more than some g
percentage of the total growth probability. Then we defing
as the probability in timet that two branches are produce
which survive for timet, which relates the arbitrariness i
survival to an arbitrariness in the renormalization schem
Alternatively, defineg as the probability in timeT̃ that two
branches are produced which survive up to a separatioL̃

}vT̃; this second definition will be more convenient and w
be used in the numerical work below. The scaleL̃ is inter-
mediate between the scalesl andL.

We will compute two RG functions, the renormalizatio
of the growth velocity and the renormalization of the ti
splitting rateg. Consider the renormalization of growth ve
locity to first order ing at h54. If there is only one branch
4-4
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GROWTH EXPONENTS WITH 3.99 WALKERS PHYSICAL REVIEW E64 046104
in the system, this branch grows upward with velocityv. If
the branch splits into two subbranches, the growth velocit
reduced until eventually one of the two subbranches w
and the original growth velocity is restored at long time
where no further tip-splitting events intervene so long as
work to first order ing. The probability that the subbranche
survive to distanceL̃ scales as 1/L̃.

The probability that both branches survive exactly timt
and distancevt scales as 1/t2. If the two branches survive fo
time t, the height of the cluster at long times is reduced by
amount of ordervt compared to the height of the clust
without tip splitting. More precisely, evolve the cluster f
total timeT, so that the probability of a single such tip spl
ting event isgT/t2, and compute the average heighth of the
cluster after timeT, to find

h5vT2gTcE dt

t
, ~18!

wherec is some constant. This yields the renormalized
locity

v ren5vS 12
gc

v
ln L̃/ l D . ~19!

Interpreting Eq.~19! as the first term in the expansion of
power law given by Eq.~7!, we find that the dimension o
the cluster is given by

D5gc/v. ~20!

For h,4, the number of tip-splitting events proliferates. T
average number of branches in a system at macroscopic
L̃ scales as

L̃ (42h)/2, ~21!

as seen by the lowest term in theb function above. Go to
second order ing2 to compute the next term in theb func-
tion. If two tip splittings occur, there are now three comp
ing branches, and the enhanced competition reduces
chance that any two of them will survive till long time
There is a simple physical reason for the enhanced com
tion. Equation~16! may seem surprising, as it implies th
for h,2 the branches do not compete, while it is known th
for any h.0 a smooth surface is unstable. However,
factor t21 in Eq. ~16! is due to the increasing separation
the growth tips over time. Starting with perturbations on
smooth surface, there is no such mechanism causing the
turbations to spread in space. Similarly, if there is a la
number of competing branches, they are forced close
each other and are unable to spread apart from each oth
rapidly, enhancing the competition. In Fig. 2, we show va
ous possibilities. In~a!, the small branch in the middle i
actually reducing the competition of the two outer branch
while in ~b! and ~c! the competition of the two large
branches is enhanced. To determine which of these effec
stronger requires a calculation.
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Let the second splitting occur at timet after the first split-
ting. If one of the two branches resulting from the seco
splitting dies after a time much less thant, the second split-
ting has no affect. Thus, the probability that the second sp
ting will affect the evolution of the first pair of branches
proportional to*dt/t, again yielding a logarithm as desire

Precisely, consider the number of surviving pair
branches at scaleL̃ that are produced in timeT. If there are
no tip-splitting events, this probability is zero; if there is on
it is given by the calculation above. If there are two, t
branches compete and one must integrate over the in
time at which the two branches are created as well as o
the initial conditions after each tip-splitting event. It is co
venient to defineg̃ to be therate at which any tip-splitting
event occurs. Only some fraction of these events lead
pair of branches surviving for sufficient time, so thatg

,g̃T̃. The number of surviving pairs, to orderg̃2, is

P1g̃Te2g̃T1E dtP2~ t !
g̃2

2
Te2g̃T1•••5P1g̃T2P1g̃2T2

1E dt P2~ t !
g̃2

2
T1••• ~22!

whereP1 is the probability that one tip-splitting event give
rise to a surviving pair of branches, whileP2(t) is the prob-
ability that two such events produce a surviving pair, witht

the time difference between events. Note thatP1} l /L̃.
If t@T̃, then the branch creation events are independ

and we find thatP252P1, as either of the two creation
events may give rise to a branch pair at scaleL̃, so that terms
of order T2 cancel in the above equation. Otherwise, 2P1
2P2 is of order 1/t; assume

P252P12c2 /utu, ~23!

for some constantc2. Then, the bare constantg is determined
by

g5P1g̃T̃, ~24!

and the probability of producing a surviving branch pair
scaleL̃ in time T̃ is given by

T̃S P1g̃2
c2

2
g̃2E dt

t D5g2c2

g2

T̃P1
2

ln L̃/ l . ~25!

This yields theb function, taking into account velocity
renormalization,

FIG. 2. Competition of three branches. Various possibilities.
4-5
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M. B. HASTINGS PHYSICAL REVIEW E 64 046104
b~g!5
e

2
g2c2

g2

T̃P1
2

1c
g2

v
. ~26!

To evaluatec2, as well asc in Eq. ~20!, we must turn to a
numerical renormalization group as discussed in the n
section, summing over different possible branch creat
events. We will numerically evaluateP2(t) for a fixed t
@ l /v, and then use the scaling arguments given here to
tain P2(t) for any t and get the lowest orderb function.
Similarly, c can be obtained by considering only one set
initial conditions after the tip-splitting event and using sc
ing arguments. The RG requires numerical work, but
mains essentially an analytical treatment, in the same s
that we may refer to an RG in field theory as analytic
despite possible use of a computer to perform loop integr

There is an interesting question related to the correct fo
of theb function for various definitions ofg, whetherg is the
rate at which branch pairs are produced that survive to s
L̃ or until time L̃/v. The second definition is what is neede
to determine the number of branch pairs in the system.
time t after the first tip-splitting event, let there be a seco
tip-splitting event, so that one of the second pair of branc
survives only for a timet8 much less thant. Then, when the
two remaining branches reach separationL̃, a time L̃/v1t8
has elapsed, rather than a timeL̃/v. We will find that, de-
pending on which definition ofg is used,P2(t) will differ by
an amount of ordert8/L̃. Note that this is independent oft,
differing from the form we have assumed in Eq.~23!. This
yields a change in*dtP2(t) independent ofL, and of order
t8; integrating over initial conditions for the second branc
ing event will yield a logarithmic correction to*dtP2(t).
However, since the velocity is renormalized, there is an
ditional term in theb function for the first definition, equa
to g2c/v, which gives the same correction toP2(t). How-
ever, we will not need to consider this complication, beca
for fixed t8 and largeL̃, the change inP2(t) is negligible and
this is the regime in which we perform the numerical calc
lations.

Similarly, there may also be slight differences in the de
nition of g between requiring that the branch pair grow un
height L̃ or until separation L˜ . Although at long times the
surviving branch pair grows with the characteristic 7
angle, and the height and separation are related, there
again be deviations in the separation by an amount of o
1/L̃. If the present work, concerned with the stationary
gime in the cylindrical geometry, is extended to the affi
regime, perhaps these deviations in separation will be fo
to be connected with different scaling in the horizontal a
vertical directions.

VI. NUMERICAL RENORMALIZATION GROUP

The reduced model was implemented numerically in
discrete version, such that the program alternates betw
growth tips on different time steps, advancing each grow
tip by an amount proportional to the growth probability me
sure. To solve Laplace’s equation quickly, the method
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iterated conformal maps@18,12# is used, using ‘‘strike map-
pings’’ @18# to obtain branches of vanishing aspect ratio, a
computing the Jacobian at the tips by appropriate regular
tion.

To obtain dynamics in the scaling regime well below t
macroscopic cutoff, we simply take this cutoff to infinity
which poses no difficulty in a conformal mapping impleme
tation of the reduced model: the surface that is mapped o
the growing cluster is the real line, while the mapz→z2 is
used to produce a single growing tip as an initial conditio
To evaluate theb function, we run the simulations until th
two most active branches become more than a large,
finite, distanceL̃ apart. Of course, if it were not necessary
perform the calculations numerically, this distance would
taken to be infinite. To produce tip splittings, we use a fun
tion whose derivative is given by Eq.~8! to produce a pair of
growth tips, choosing the initial separation between tips to
small. Interestingly, this function can be obtained in clos
form as~for x51)

F~z!5z2/5~z225!4/5. ~27!

The strike mappings take a particularly simple form in th
geometry. We havef (z)5Az22l. Using the shape of the
mapF(z)}Fi(z2zi)

2 near the tip, this increases the leng
of the branch byFil. The regularized value ofF8(z) near
the tip isAFi , but l is taken proportional touF8u22, so that
we produce strikes of constant length in the physical pla

With this geometry, the program runs significantly fas
than such a program in radial geometry, due to the sim
form of the map functions. It may be worth investigating th
as a means of speeding up simulations using the confor
mapping model.

The errors due to discretization can be surprisingly lar
so that even after thousands of time steps there are no
able, though small, deviations from the linearized bran
competition dynamics discussed above. We have veri
that these errors are reduced as the discretization is redu
but we have had to make some compromises to obta
sufficiently fast program.

To obtain a range of different initial conditions fo
branches after splitting, we use the discretized version of
reduced model, but we introduce a factorf that multiplies the
growth velocity of one of the daughter branches on thefirst
step after splitting. When this factor is close to 0, that dau
ter tends to lose; when it is close to 1, that daughter tend
win; a balance arose whenf is nearf 0'0.278. We are able to
start the branches sufficiently close that they comp
roughly equally for tens of thousands of growth steps.

As discussed above, we fix the timet of the second split-
ting ~chosen to be 500 steps for each of the two branch!,
pick one of the two branches to split at random with relat
probability equal to the relative growth measure on the ti
and then evolve the three branches. Typically, for the t
most active branches to obtain the chosen separation req
of order another 3000 growth steps per branch.

We wish the initial conditions for the second tip-splittin
event to have the same microscopic cutoff as for the fi
tip-splitting event. In order to do this, the same mapping
4-6
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GROWTH EXPONENTS WITH 3.99 WALKERS PHYSICAL REVIEW E64 046104
Eq. ~27! is used for both tip-splitting events, with an appr
priately scaled value ofx, and the overall velocity scale afte
the second tip-splitting event is chosen such that those
daughters initially have the same step size in thephysical
planeas the two daughters after the first tip-splitting even

We tried two methods of handling the integration ov
initial conditions. First, a Monte Carlo technique: initial co
ditions are chosen randomly and we count the fraction
initial conditions that give rise to a surviving branch pair. T
speed the Monte Carlo calculation, we sampled only a su
of initial conditions, chosen to include all conditions th
could give rise to a surviving pair. By having the progra
randomly choose which of the two branches after the sec
branching event would get the first growth step, we ensu
that the distribution of initial conditions for this event wa
symmetric between the branch growing inward and
branch growing outward. The Monte Carlo technique s
fered from the problem that, to obtain a sufficient number
surviving branch pairs in the available computer time,
had to adopt a fairly broad definition of ‘‘surviving’’ and

keepL̃ finite. The correct limit for the renormalization grou

is to take L̃@ l . In this limit, it does not matter how the

survival of a branch pair is defined, but for finiteL̃ we more
closely approximate the desired results if we take the de
tion of survival to be very narrow, so that the two branch
must be almost identical in growth measure. This was
complished by manually searching for initial conditions th
gave rise to a surviving branch pair~with an extremely nar-
row definition of survival so thatd for the two surviving
branches was almost exactly zero! and numerically comput-
ing the derivative ofd with respect to the initial conditions to
obtainP1 andP2.

If we fix the initial conditions of one of the tip-splitting
events to produce a very asymmetric pair of daughters
that after a brief time only one daughter survives, and cho
the initial conditions of the other tip-splitting event ra
domly, the probability that a branch pair survives to scaleL̃
must approachP1. Due to the discretization errors in ou
program, this probability is within a few percent ofP1, but
not exactly equal toP1; we have verified that this differenc
also disappears as the discretization is reduced. The num
cal evaluation ofP222P1 suffers from the problem that th
large contributions resulting from the very narrow regi
where all three branches compete may be swamped by s
errors over the large region of all other initial condition
Thus, we have had to adapt some criterion for determin
what range of initial conditions to integrate over. This ne
essarily introduces some error and makes our results for
b function somewhat subjective. It is hoped that improv
numerical techniques will at some point improve this situ
tion. One reason for the difficulty is that the processes in F
2 contribute to theb function with different signs. Anothe
reason for these small errors is discussed at the end o
last section in terms of corrections of order 1/L̃ which are
logarithmically divergent when integrated over initial cond
tions for the second surviving branch pair; perhaps usin
different definition ofg will improve the situation.
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The constantc in Eq. ~20! is obtained by evaluating a
process with a single tip splitting. We consider the change
height of the dominant branch of the pair as compared w
the height of a branch without splitting. The simulation
the branch pair was run for approximately 50 000 steps
branch. The change in height fits very well the formc
2c1 /At, with c1 some other constant; using this form w
were able to obtain the asymptotic change in height by
trapolation. This quantityc can be obtained much more a
curately thanc2.

Using Eq.~20! evaluated at the fixed point of Eq.~26!, I
have obtained that

D'0.46e. ~28!

Using different estimates for the range of initial conditio
over which to integrate, I have obtained a lower estimate
D'0.40e and an upper estimate ofD'0.51e. I then com-
pared these results to the dimensions obtained numeric
@12#. The RG result seems high, for ath53 we have
D'0.26 and ath53.5 we haveD'0.16, where these re
sults are obtained by subtracting unity from the dimensio
in radial geometry. However, fitting the dimensions obtain
numerically forh50,1,2,3 to a polynomial ine, I found that
the lowest order result is

D'0.45e, ~29!

in good agreement with the RG result. I did not inclu
h53.5 in the polynomial fit as this dimension is known le
accurately than the others and has an inordinate effect on
lowest order term ine; taking D50.17 ath53.5 leads to
D'0.48e, while takingD50.16 leads toD'0.41e.

Let us now consider the multifractal spectrum@20,21#. Let
x be a point in the physical plane, withz5F21(x). The
harmonic measure isuF8(z)u21dx5dz. Define p(x) to be
the normalizedharmonic measure

p~x!dx5
uF8~z!u21dx

E ~dx8/ l !F8~z8!21

, ~30!

and the exponentst(q) by

K E dx

l
pq~x!L 5S l

L D t(q)

, ~31!

where the angular brackets denote averaging over rea
tions of the cluster. For an isolated branch in cylindric
geometry, if we pick a parametrization such thatF(z)}z2

near the tip, then the denominator of Eq.~30! is of order
AL/ l . For q.2 the integral of Eq.~31! is divergent near the
tip and is cut off at length scalel. For 0,q,2 this integral
is divergent away from the tip, and is cut off at a physic
length scaleL, when the power law behavior of the electr
field crosses over to an exponential decay. Forq<0, these
exponents are ill defined in this geometry. For an isola
branch, we havet(q)5q/2 for q.2 and t(q)5q21 for
q,2.
4-7
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M. B. HASTINGS PHYSICAL REVIEW E 64 046104
It is also possible to compute corrections to the multifra
tal spectrum in the RG. Various multifractal exponents m
be defined, including quenched and annealed exponents@22#.
It has been argued@23# that asymptotically all these expo
nents are identical for DLA, but that for finite size system
the apparent exponents may be quite different. The diffe
exponents all involve different ways of choosing how
weight different realizations of the cluster when performi
the average in Eq.~31!. Within the RG framework, we nee
to have a multiplicatively renormalizable operator in order
obtain power laws from the lowest order computation. T
requires choosing the correct set of exponents and the co
average, as will be discussed below.

Let us first consider corrections tot(q) for q.2. The
integral of Eq.~31! must be summed over all configuration
of the cluster. The configuration with only one branch giv
the zeroth order result. Let*pq for the configuration with a
single branch be equal toP0(q). At first order ing one must
sum over configurations with two branches also. One m
integrate *pq2P0 over the full trajectory of the two
branches, starting with the two branches almost equal
continuing until one branch has completely won out. T
trajectory can be obtained numerically. Note that the integ
of pq(z) will be dominated by the field near the tips, and
it suffices to knowFi at each tip:

E dx

l
pq~x!}S l

L D q/2

(
i

Fi
2q/2 . ~32!

Suppose the integral over the branch trajectory of*pq

2P0(q) is equal to2txP0, where t is the time the two
branches exist. Integrating over initial conditions of the tw
branches, we have that the left-hand side of Eq.~31! is equal
to

S l

L D q/2

~P02xgP0ln L/ l 1••• ! ~33!

giving th(q)5q/21xg.
How should we perform the integral over the branch t

jectory? Each configuration along the trajectory correspo
to a different realization of the cluster, and, depending
how we choose to weight different realizations, we m
weight the integral over the trajectory differently. We choo
to weight the integral by

S (
i

AFi
2hD 21

dt, ~34!

which corresponds to changing the time scale such that e
branch grows at a rate proportional toAFi

2h, rather than that
given by Eq.~4!. However, this is exactly what happens wi
a large number of branches if one of the branches splits
this case, the denominator of Eq.~4! involves contributions
from all branches and is insensitive to the splitting on
single branch, so that we expect that this choice of weigh
function will define ^*pq& in a manner that is multiplica
tively renormalizable.
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Further, with this choice, the dimensions will automa
cally obey the electrostatic scaling law@24# order by order.
This scaling law adapted to cylindrical geometry is

11D5t~21h!2t~h!. ~35!

The electrostatic law is obtained, in this geometry, by not
that the growth velocity is proportional to the average, us
the growth probability measure, ofl over tips: this average
scales ast(21h)2t(h). Since this relation between th
growth velocity and the average ofl holds for each branch
configuration separately, it holds for the exponents as
have defined the average above.

We have obtained the lowest order results that

t~6!5311.77D, t~5!52.511.35D,

t~4!5210.77D, t~3!51.520.23D. ~36!

We report these results in terms ofD by using Eqs.~20! and
~33! as these calculations are more accurate than that for
~26!. Note that even at lowest order ine the t(q) spectrum
does not have any simple form such as a log-normal dis
bution or gap scaling. By looking at largerq, we find that the
Turkevich-Scher@25# scaling law does not hold as an equa
ity in this expansion. It holds only as an inequality.

For 0,q,2, a similar calculation can be performed, a
though it will be slightly more complicated as the integral
pq(z) is no longer dominated by the tip and must be cons
ered over the full branch. Further, the cutoffL of cylindrical
geometry must be kept finite, rather than being taken infin
as we have done in the calculations above, to keep the i
gral of pq finite.

One further complication is thatt(q) is not an analytic
function of 42h nearq52. Thet(q) above correspond to
an f (a) spectrum with two points:f 50.5,a50, the zero-
dimensional set of singularities near the tips, andf 51,a
51, the rest of the branch forming a one-dimensional set.
h decreases, the singularities near the tips soften while
dimension of the set of tips increases, and the functionf (a)
becomes a curve rather than a set of discrete points.
function t(q) above is not analytic inq as for q.2 the
integral of pq is dominated bya50, while for q,2 it is
dominated bya51. Similarly, for fixedq near 2, ash is
decreased the value ofa, which controlst(q), may jump
discontinuously from near 0 to near 1, or vice versa. It m
be possible to surmount this problem by expanding the l
hand side of Eq.~31! in q22 and trying to resolve the loga
rithms that result as a sum of different power laws.

VII. RENORMALIZABILITY

Clearly, it will be very difficult to prove renormalizability
since we find it difficult to evaluate even lowest order pr
cesses, but renormalizability is essential for the RG we e
ploy. Further, if we prove multiplicative renormalizabilit
for the theory with two parametersv,g, then the fractal na-
ture of the DBM cluster will follow without any detailed
calculation ofb functions: it is clear thatv has no effect on
the RG flow ofg, and if g has an attractive fixed point the
4-8
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GROWTH EXPONENTS WITH 3.99 WALKERS PHYSICAL REVIEW E64 046104
without fine-tuning the theory must arrive at a critical po
with nontrivial exponents. If insteadg had a repulsive fixed
point, we would observe very different critical behavior: f
h.4, there would be a phase transition in the behavior
the system as a function of the bare coupling constant f
one dimensional to fractal; the bare coupling constant co
perhaps be adjusted using a noise reduced version of
model. Also, for fixed bareg, there would be a discontinuou
change in the dimension of the cluster as a function oh
from D.0 to D50. So let us sketch how such a proof mig
proceed.

Consider a collection of competing branches with sepa
tion distances of orderL1. Let one branch have a singl
tip-splitting event such that after a timeT2 only one of the
two subbranches survives, withvT2!L1. While both sub-
branches survive the total growth measure on the pair is
duced compared to that on the subbranch, but at times m
greater thanT2 the growth measure of the surviving su
branch asymptotically approaches that of the parent, an
scaleL1 it seems simply as if the branch with the tip-splittin
event had grown with a renormalized velocity for a br
time. After integrating overT2, the renormalization of the
velocity is of order lnL1 /l.

It would be disastrous if instead there were a logarithm
divergence that depended onL1, such asL1ln L1 /l, as this
would change the growth rules of the theory and the man
in which branches compete. However, since we are in
ested in the divergence asT2→0, we can restrict ourselve
to vT2,L1 and formally expand the growth velocity in
power series ofvT2 /L1 ~this is possible since, forT2 small,
the influence of the branch pair on the other branche
small!, so that the growth velocity is

(
k
E dT2

T2
ak~vT2 /L1!k. ~37!

The zeroth-order term in this series yields a logarithmic
vergence of desired form, while the higher terms are
divergent.

It would equally be disastrous if the growth measure
the surviving subbranch were not to asymptotically appro
that of the parent. However, this follows from properties
Laplace’s equation: at long times the surviving tip is a
height much greater than the dead subbranch, and the
subbranch has only a small effect on the growth probabili
near the surviving tip.

This show that processes with a single branching
renormalizev. Consider several branchings. Each set
branchings is defined by a tree diagram indicating the top
ogy of the branchings, and a set of timest indicating the
times at which branching take place as well as a set of in
conditions for each branch pair. To the initial conditions c
responds another set of times, the times that the two bran
survive. For fixed topology, one must integrate over th
times and evaluate the average rate at which the clu
grows or produces branches. Let us order the times f
smallest to largest, and send groups of these times to ze
a set of timest i are sent to zero together, with some oth
timesta being held fixed, one finds, as above, logarithmica
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divergent renormalizations ofv andg. However, by expand-
ing in t i /ta as above, we again obtain the desired result t
the logarithmically divergent terms depend only on the log
rithm of the ratio ofta /t i .

These arguments sketch the renormalizability of
theory. One must also show, for example, that there are
divergent contributions to the rate at which one branch sp
into three.

Also, in defining the reduced model, we ignored sh
noise in the velocity of a given branch; however, the proc
of tip splitting, which renormalizes the average velocity, w
reintroduce some noise in the velocity. The noise in the
locity of a branch is irrelevant at long time; fortunately, the
while the renormalization of velocity is logarithmically d
vergent, the rms fluctuations in the velocity are convergen
short times, behaving as~taking the branch pair to survive
for time t) *(dt/t2)t2.

In the continuous model,d increases in time, and th
probability of havingd50 decreases in time, such that th
probability, multiplied by the branch length, remains co
stant. Consider now the case of a discrete formulation of
model, to see the effects of shot noise or other fluctuation
the velocity. Suppose two competing branches have len
11d,12d. Take a discrete growth step, adding length 2d to
one of the branches, with probabilities 1/26d. The probabil-
ity of having the two branches symmetrically distributed a
ter the discrete growth step is 1/22d. If the initial configu-
ration of d is chosen uniformly neard50, we find that the
probability of havingd50 is again decreased with this prob
ability, multiplied by the branch length, again remainin
constant to linear order ind. To second order ind we will
find differences between the continuous and discrete mod

One can do a similar calculation for the case in which
growth of a branch stagnates due to a tip-splitting event. T
probability of a given branch having a tip-splitting event
1/26d, while the tip-splitting event will slow that branch fo
a time 1/27d during which the other branch grows at
velocity 1/27d. Again one can show that the probability o
havingd50, multiplied by branch length, remains consta
to linear order in the time of the tip-splitting event.

This comparison between continuous and discrete mo
is why we emphasize that the rms fluctuations induced by
splitting are convergent. Suppose instead that the rms fl
tuations were not convergent. Then, one would find in Fi
2~a! and 2~b! that c2 was divergent when integrating ove
initial conditions for the second branching event, whi
would lead to divergences of the form (lnL/l)2, destroying
renormalizability.

VIII. CONCLUSION

We have presented the lowest order in ane542h expan-
sion, obtaining good agreement with numerical results.
more accurate comparison with DLA, for whiche53, exten-
sion to higher order with further branching processes is n
essary. Due to the need for numerical techniques to eval
even lowest order processes, it is unclear if higher or
terms can be computed accurately.

It is also necessary to improve the numerical evaluation
4-9
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lowest order processes. To numerically simulate the redu
model, some discretization and cutoff is necessary. We h
used a particular cutoff, but perhaps other cutoffs are pre
able. Indeed, the discrete random walker formulation of
DBM provides another cutoff that may lead to more accur
results; one can simulate the DBM with growth confined
occur on only two or three different tips to generate a sys
with a fixed number of branches.

It is also interesting to consider the extension to hig
dimensions. While conformal mapping techniques were v
useful in all the calculations above, the basic idea, determ
ing the relevance of tip splitting based on the competition
two branches, should be applicable in any dimension. W
there is a lower bound on the dimension of DLA in high
dimensions@26#, there does not seem to be any such bou
ys

. E
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ev
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for the DBM, which would prevent the existence of an upp
critical h.
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