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Growth exponents with 3.99 walkers

M. B. Hasting$
CNLS, MS B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 26 April 2001; published 19 September 2001

It is argued that the dielectric-breakdown model has an upper crificalqual to 4, for which the clusters
become one dimensional. A renormalization group treatment of the model is presented near theycritical
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I. INTRODUCTION one-dimensional branches with discrete tip-splitting events.
Next, we analyze the competition of two branches and show
The model of diffusion-limited aggregatid®LA) [1] has that on large scales tip-splitting events proliferate for 4,
presented a great challenge to theorists. The model describbat are suppressed foy>4. Then we consider the compe-
many phenomena, including viscous fingerifig], elec- tition of three branche&sing numerical and analytical tech-
trodeposition[3], and dendritic growtl4], but has also be- niques and show that these higher order effects suppress the
come important as a theoretical problem of its own. Whiletip splitting, leading to an attractive fixed point at a finite
the growth rules are simple, they are highly nonlocal andvalue of the tip-splitting rate, with no relevant perturbations
give rise to complex branching structures that cannot be dedf the fixed point. We then use this fixed point to determine
scribed easily by any small perturbation of a smooth surfacdractal and multifractal dimensions and compare to numerics.
Despite much important recent theoretical work on the The renormalization groufRG) used involves expanding
structure of DLA[5-7], these attempts have all involved simultaneously in 4 7z and the tip-splitting rate. A related
approximations or phenomenological assumptions, without &p-splitting expansion to systematically extend the branched
fully controlled expansion. In analogy to critical phenomena,growth model has been suggested previoisé}. We con-
we would also like are expansion to provide a framework sider a system with a given ratio between microscopic and
that can be systematically improved. macroscopic cutoffs and evaluate the probability of various
It is believed that DLA remains nontrivial in any finite growth processes, to obtain corrections to the growth rate of
dimension, so an expansion about an upper critical dimenthe cluster and to the tip-splitting rate; we find that all such
sion is not possiblg8]. We turn instead to another generali- quantities can be written as a sum of logarithmic corrections
zation of DLA, the dielectric-breakdown modddBM) [9].  to bare quantities. We then make an assumption that the
This model offers a continuously varying fractal dimensionlogarithms may be resummed to produce power laws. This
as a function of a parametey, ranging from 2 aty=0 to  assumption relies on the renormalizability of the model; we
approximately 1.7 app=1 (DLA) to 1 at p=o. The model have no proof of renormalizability, but in the last section we
is equivalent to simultaneously releasimgrandom walkers —sketch how such a proof might proceed. Resummation of
and requiring that they all hit a given point for growth to logarithms has been used for other nonequilibrium systems
occur. As the model remains nontrivial far— 07 [10], we ~ such as Barenblatt's equatiphS]
seek instead an expansion about an upper critigal for
which the clusters become one dimensional. One attractive
feature of this approach will be that negg the clusters are Il. REDUCED MODEL
described in terms of one-dimensional branches, so that the

branching structure of DLA is inherent. Since we wish to have an RG in which power laws are

Previous numerical studies have suggesfed 4 [11], as obtained _by resummaFion of logarithms, it is essential to re-
well as providing some analytic explanation. A recent Stud)}”nove all |rrele\_/ant variables fr_om the problem. We construct
of much larger cluster§l2] also indicates a finitey. be- such a model in two steps. F|r§t, we go fr(_)m the conformal
tween 4 and 5. This study found significant finite size cor-Mapping model for D(Ij‘A t%a d|sgrete fverrlsmn 0(; tlh? moﬁ.e:;
rections for clusters withp=4, making it problematic to Elext, we go to a reduced version of the model in which
determine dimension with small clusters. ranches ha_1ve vanishing aspect ratio afﬁd grow _determlnl_stl-

In this work we provide an analytic argument fgg=4 cally. The discrete model will be useful in providing a defi-

based on branch competition, and present the lowest order I?{“O” of tip-splitting ev_ents, which will provide the only
source of randomness in the reduced model.

a 4—»n expansion. The techniques are related to the . :
branched growth modé6] and to singular Laplacian growth Recall the conformal mapping formulaﬂc{@S] of DLA .
and the dielectric breakdown model: consider a function

[13], while the way we evaluate growth processes in the_ ) .
long-time limit is close to the fixed-scale transformat[ai F (.Z) that maps a straight line onto the .bontinldar.y of the
Arowing cluster aften growth steps. To obtaiR"™ ", pick a

We proceed as follows. First we argue the equivalence, at - _ - N i
least neary=4, of the DBM to a reduced model based on Pointw with probability|F™"(z)|* 7. Define an elementary
mappingf "*1)(z) that produces a bump of linear siz@ at
w, where, to obtain the correct bump size in the physical
*Electronic address: hastings@cnls.lanl.gov plane,
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N=|FM' (w)| 2. (1) ~ Mmicroscopic regularization of the model is at fixed length in
the physical plane, leading to a cutoff at length of order
Then, defineg=("*1)(z) = F(M(f("+1)(Z)). 1/J|F’] in the z plane. Thus, the correctly regularized value

Next, we consider a discrete version of the above modelof F' at the growth tip is
Each elementary mappirfghas square-root singularities lo-
cated a distance of ordefx from w. All points z between \/F—, )
these singularities are mapped onto the surface of a give . . . .
bump (although, after further growth steps, some of theseﬂumerlcally, one may implement this by evaluatifg a

oints mav be manped onto bumps arowing off the iVenshort distance fronz. We note that the difference iR’
P y b€ mapp PS growing ne g depending on regularization means that different short-
bump. In the discrete model, we will first pick a point as

above; then, we find the nearest square-root singularities odiStanCe regularizations may imply completely different
' : q 9 &ﬂysical models; this may be behind some of the differences

each side o, _and grow a b“_mp at a point e_qwd_lstant be'found between diffusion-limited aggregation and Laplacian
tween those singularities. This simple modification means

that there is now a discrete set of growth si@sany lattice growth [19].

) . X Equation(3) is different from that taken in the idea of
formulation of the problem, one would also find a d|screteSin ular Laplacian growtfil3], and reflects the correct regu-
set of growth sites 9 P 9 ' 9

Now, assume that the cluster has a roughly One]anzatlon of the problem in the physical plane. Similarly, the

dimensional shape, with a tip nea=z (we reserve the correctly regularized growth measure at the tip, which in the

. . . 12 1_ .
index i to label different such tips If the branches were glscrete madel is aintegral of |F’|*" dz over the region
. . : . . . between singularities, is
precisely one dimensional, near the tips the singular behavior
of F(z) would be given by - \/F—i_" "
=
F(2)=Fi(z-2)% (2 S JE
I

with F; some constant. Due to the finite size of particles in
the model F(z) is given by a suitably regularized version of Further, we assume in constructing the reduced model that, if
Eq. (2) near the tip. Forp>2, the integral of the measure there is a collection of growth sites, at large scales it is valid
|[F'(2)|*~ 7 diverges for smalt, so that in the discrete model to grow each site deterministically at a velocity proportional
the probability measure will be concentrated on the ond0 EQ. (4), ignoring the shot noise inherent in the discrete
growth site at the tip, with rapidly decaying measure on thformulation of the model. As the branches become long
neighboring sites. The measure on neighboring sites will b€ompared to the walker scale, this assumption is valid. All
nonuniversal and determined by the particular form of el-the randomness in the reduced model will arise via tip split-
ementary mappinfiwe choose, which will define a particu- ting.
lar regularization of the model. In what direction does a tip grow? In our model, each

Consider a branch that grows without splitting. While the microscopic growth step is produced by a mapgingrow-
length of the branch increases constantly in time, the widtting the surface in the plane normal to itself at=z;. For a
remains of the order of the microscopic scale. Thus, at larggonsingular configuration, this grows the surface in the
scales such a branch looks like a singular configuration wittphysical plane normal to itself; however, the tip of a one-
vanishing aspect ratio. At the upper critica) the assump- dimensional configuration has no normal direction, and we
tion of growth without splitting will be valid at large scales, are forced to rely on the conformal mapping definition of
while below the upper criticaly the clusters are approxi- growth. In the conformal mapping model, growth ztfor
mately described by a collection of one-dimensionaltime dt with velocity v; can be obtained by composirfg
branches, implying that the aspect ratio is an irrelevant variwith a function f=z+uv;dt{A/(z;—2)]. As growth
able near the upper criticaj. So, in constructing the reduced progresses, the singularitis move, as the point that is
model, we will take all branches with vanishing aspect ratiomapped to a singularity of F is f~(z))=z—v;dt[\/(z

As the aspect ratio vanishes, all of the growth measure-z;)]. This leads to
becomes concentrated near the growth tip, on a scale much
less than the length of the branch. However, even though the P Z:E 1 Fly (5)
aspect ratio vanishes, due to the discretization there is some B zi—z 1V
growth measure on sites neighboring the growth tip, and
growth may arise on any of these sites, with some nonuniOur model of growth causes a tgp to grow in the direction
versal probability. This is a tip splitting event. Below, we F; in the complex plane, but &; may change in time the
will assign a tip-splitting rate, and consider how this ratetips may curve. This differs from the model of singular La-
renormalizes. As we expand to higher orders in tip splitting,placian growth in which branches always grow in a straight
we include more growth configurations, so that to suffi-line, and in which there are additional terms in the motion of
ciently high order we restore the full set of clusters found ineach tip due to growth at that tip. However, with correct
the original model. regularization in which the map functidnis chosen to pro-

We now determine the growth measure for a branchduce a bump of small but finite size, one may show that
based on the proper regularization of Eg). The correct does not move due to growth at the tigself.
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If the branches are straight, th&iiz) has a finite number 2 Otln
of singularities at branch points and growth tips. Any singu-
larity z of F that is not a growth tip obeys an equation of
motion /\\
e 6
hZ= 2 7z i Ui (6)
If the branches curve, additional singularities are continu- n(l_al)

ously produced.

Thus we present the reduced model: Let the cluster be
described by a mappirg(z) that produces a cluster made of
one-dimensional branches, with growth tips labelediby G, 1. Competition of two branches. Opening angles are indi-
Grow each tip at a velocity given by the growth measure ofcated in terms ofy,.

Eq. (4) multiplied by a growth velocity .

In addition, tips split. Assign a ratg which is an appro-
priately defined rate at which each tip has a tip-splitting
event; the definition ofj is to a certain extent arbitrary and
will be discussed more below. This rate is measured with
respect to the time integral of the growth probability measure Vren v (1/L)°. (7)
on the given tip, so that tips with greater growth probability
measure split more readily. The initial conditions for the twoLater, we will compare the analytic results to numerics on
daughter branches are randomly chosen, as one or anothtae DBM in radial geometry, so we must assume that any
daughter may have the majority of the growth probability. A difference due to geometry is small. This difference is small
regularization is necessary; as we show below, if the twdor DLA, roughly the difference between 1.66 and 1.71, and
daughter tips are created an infinitesimal distance apart wittve assume that we may add 1 to the dimension given by Eq.
a finite asymmetry in the initial conditions, one tip will im- (7) to obtain the dimension in radial geometry.
mediately dominate the growth over the other. Thus, we will
need to assign a short-distance cutoff, so that the two tips
survive for some minimum time, or to some minimum finite IV. COMPETITION OF TWO BRANCHES

separation. In.the RG we will use a _particular_cutoff; how-  consider two competing branches, the first ordeg iim
ever, the precise form of the cutoff will not be important.  the reduced model. We linearize near a symmetric configu-
ration of the two branches. The branch shape depends on the
Ill. GEOMETRY initial conditions. However, in the long-time limit, two sym-
) . L i metrically competing branches will grow straight. Physi-
Throughout, we will work in cylindrical geometry in the cally, the angle between the two branches cannot be too
long-time regime. The size of the individual particles in the gmail due to the mutual screening effects; neither can it be
original model defines a microscopic cutoff lendthwhich 4 large or the branches would end up growing back toward
will provide the minimum distance at which branch pairs arey,qiy parent. We will compute this angle below. If initially
created. The hori;ontal width of thg cylinder in which the yhe pranches are not at the given angle, they will curve and
cluster grows defines a macroscopic length stal@hese  y5516ach this angle; we have observed this curving in nu-
cutoffs in length are related to cutoffs in time for branches,arical simulations of the reduced model.
such that the minimum time a branch exists is of order If the branches are straight in the physical plafds a

In cylindrical geometry, the ratio between these cutoffs isdegenerate Schwarz-Christoffel map. We defife) by its
fixed and the front grows upward at constant velocity. Belowyerivative:

we will expand in the number of tip-splitting events, assum-
ing that the cluster is evolved for a finite tinfe so that the
average number of tip splittinggT serves as an expansion
parameter;T must be taken infinite at the end to obtain the
long-time regime. describing growth tips at= £x. We have 2v;+a,=1. In

In radial geometry, the ratio between cutoffs is constantlyFig. 1 we show the resulting configuration and relate the
changing, leading to discrepancies between different meangles toa; and as.
sures of the dimensiofil6]. An interesting future problem We will use a trick to describe the dynamics of this sys-
will be to understand radial geometry in our framework, or totem. The reduced model above has a specified dynamics for
deal with the affine regime in cylindrical geometrd/7]. the motion of the growth tip singularitiee The model of

In cylindrical geometry, the intersection of the cluster singular Laplacian growth, a different model, which admits
with a line at constant height is a fractal with dimensn solutions with straight branches afbitrary opening angle,
between 0 and 1. The cluster grows upward with velocityhas a different set of solutions for the motionxofThe equa-
ven- As the area of the cluster increases at a constant rate tions of motion of the two models match only when

time, v,en IS related to the ratio of scales and the microscopic
velocity v by

F'(2)=(z—y) "Wz+y) "1z “2(z—Xx)(z+Xx), (8)
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for z= ¥ x. This use of singular Laplacian growth is simply a
trick to derive the constraini9) that a Schwarz-Christoffel
map must obey to grow straight under the reduced model

dynamics.

If the map remains Schwarz-Christoffel, we use £&).to
find the motion ofx, as well as Eq(6) to describe the motio

PHYSICAL REVIEW E 64 046104

almost symmetric configuration occurs in a two-dimensional
parameter space, specified Byand by the overall length
scale of the branches.

After some algebra, one findgd= (v,—v,)/t—(J/t), or

(7t6:

n 1)
E—l)?. (15

n The factor of 1f arises from Eq(10), giving x= /2. This

of y. We find factor implies
11 Sort72 1, (16)
O X= 5 2%’ (10 . )
The factort”< in the above equation reflects the branch com-
petition. The factort !, present even ah=0, reflects the
gyt 1 1y fact that if both branches grow at constant velocity the dif-
v=32 y—X y+x/’ (19 ference in the lengths of the two branches remains constant,

where we normalizé;=1 for the two different tips =1,2.

We note that for this configuratioR; is constant in time.

while the total length of each branch and the separation be-
tween branches increase linearhtjiso that the difference in
length scaled by total length behavestas.

For =4, & grows linearly in time. For large enough
nonlinear effects take over and one branch dies. Thus, as-
suming the branches are created after a tip-splitting event
with a probability that is not singular &= 0, the probability
of both branches surviving for timeis proportional to 1t/ at
n=4. On the other hand, the number of possible tip-splitting
(13 events in timet is proportional tat. Thus, the probability of

creating a branch in timéthat survives for timd is inde-
which implies that the competing branches have a 72° dependent oft. This W|II_ bec_ome more clear in the next sec-
gree opening angle. In numerical simulations witmear 4 tions When we CQr_ISIder interaction of three branches. For
[12], this characteristic opening angle can be clearly seen. 74, this probability decays for large on the other hand,

Having foundF when the two branches are symmetric, for 7<<4, this probability increases, and tip-splitting events
we now consider, to linear order, to competition of two Proliferate. Defininge=4—, the lowest ordeg function is
asymmetric branches. Let the branches have growth mea-
suresv, andv,. Define §=InF/F,. We will find that the
dynamics is unstable, and one of the two branches will win;
as that branch wins, it will curve, until it becomes parallel to
its parent. However, to linear order, we may ignore the cur-
vature, and assume that the map retains the Schwarz-
Christoffel form. Above, we noted that the branches grow in  The renormalization group is based on simultaneously ex-
the directionF; ; while the competition moves the singulari- panding ing and 4— ». In this section we outline how the
ties z;, leading to changes irF; and curvature of the RG works; in the next section we will discuss the implemen-
branches, Eq(9) implies that tolinear order the motion of tation of the RG.
singularities does not change the angle at which the branches We define survival of two subbranches by requiring that
grow. neither of the two subbranches has more than some given

Equation(8) generalizes to percentage of the total growth probability. Then we define
as the probability in time that two branches are produced
which survive for timet, which relates the arbitrariness in
survival to an arbitrariness in the renormalization scheme.

Alternatively, defineg as the probability in tim& that two

Assume the variou$ are all small. Assuming that the map bra~nches are produced which survive up to a separation
retains this form, one can use the equations of motion for alt-v T; this second definition will be more convenient and will
five singularities to determine the dynamics of the map. Rebe used in the numerical work below. The schlés inter-
gardless of whethep; is chosen from Eq(4) or chosen mediate between the scaleandL.

arbitrarily, Egs.(5) and(6) lead to constraints on the possible ~ We will compute two RG functions, the renormalization
resulting § which reflect constraints following from the as- of the growth velocity and the renormalization of the tip-
sumption that the Schwarz-Christoffel map is degenerate. Asplitting rateg. Consider the renormalization of growth ve-
a result, the competition of two branches starting from arocity to first order ing at »=4. If there is only one branch

Requiring thatd,y/ d;x=y/x, we find that

y=15x. (12
Requiring Eq.(9), to obtain straight growth, we find

a1=1/5, a2=3/5,

€
ﬁ(g)=§g- (17

V. RENORMALIZATION GROUP

F'(2)=(z—y+ 61 “Uz+y+ §) “Uz+ 53)” *2(z—X

+ 8,)(z+ X+ 55). (14
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in the system, this branch grows upward with velogitylf

a) b) ¢)
the branch splits into two subbranches, the growth velocity is
reduced until eventually one of the two subbranches wins
and the original growth velocity is restored at long times,
where no further tip-splitting events intervene so long as we

work to first order ing. The probability that the subbranches

survive to distancé scales as 1/.

The probability that both branches survive exactly time FIG. 2. Competition of three branches. Various possibilities.
and distancet scales as 17. If the two branches survive for
timet, the height of the cluster at long times is reduced by an Let the second splitting occur at tinb@fter the first split-
amount of ordewt compared to the height of the cluster ting. If one of the two branches resulting from the second
without tip splitting. More precisely, evolve the cluster for splitting dies after a time much less tharthe second split-
total time T, so that the probability of a single such tip split- ting has no affect. Thus, the probability that the second split-

ting event ing/tZ, and compute the average heighof the ting will affect the evolution of the first pair of branches is
cluster after timeT, to find proportional tof dt/t, again yielding a logarithm as desired.
Precisely, consider the number of surviving pair of

branches at scale that are produced in tim&. If there are
no tip-splitting events, this probability is zero; if there is one
it is given by the calculation above. If there are two, the
wherec is some constant. This yields the renormalized vebranches compete and one must integrate over the initial
locity time at which the two branches are created as well as over
the initial conditions after each tip-splitting event. It is con-
c -~ venient to defing to be therate at which any tip-splitting
Uren:v( 1- 7'” L/l ) (19 event occurs. Only some fraction of these events lead to a
pair of branches surviving for sufficient time, so that
Interpreting Eq.(19) as the first term in the expansion of a <gT. The number of surviving pairs, to ordg?, is

power law given by Eq(7), we find that the dimension of
the cluster is given by

dt
h=vT—chfT, (18

~ ~2 ~ —~ —~
P1§Te‘9T+f dth(t)%Te‘gT+ ..=P,gT—P,g°T?
D=gclv. (20

g2
For n<4, the number of tip-splitting events proliferates. The + f dt Py(t) ET”L T (22
average number of branches in a system at macroscopic scale
L scales as whereP, is the probability that one tip-splitting event gives
rise to a surviving pair of branches, whi(t) is the prob-
T@-me2 (21) ability that two such events produce a surviving pair, with

the time difference between events. Note tRat<|/L.

as seen by the lowest term in tiefunction above. Go to If t=>T, then the branch creation events are independent,
second order imy? to compute the next term in the func-  and we find thatP,=2P,, as either of the two creation

tion. If two tlp Spllttlngs occur, there are now three Compet'events may give rise to a branch pair at S€a|eo that terms

ing branches, and the enhanced competition reduces thg order T? cancel in the above equation. Otherwisd;2
chance that any two of them will survive till long times. —p, is of order 1f; assume

There is a simple physical reason for the enhanced competi-
tion. Equation(16) may seem surprising, as it implies that P,=2P;—c,/|t], (23
for »<<2 the branches do not compete, while it is known that . .
for any »>0 a smooth surface is unstable. However, thefor some constant,. Then, the bare constagis determined
factort ! in Eq. (16) is due to the increasing separation of by
the growth tips over time. Starting with perturbations on a
smooth surface, there is no such mechanism causing the per-
turbations to spread in space. Similarly, if there is a large o ; o -
number of competing branches, they are forced closer tgnd tbe_ pr_obapjll.ty o_f producing a surviving branch pair at
each other and are unable to spread apart from each other $2/€L in time T is given by
rapidly, enhancing the competition. In Fig. 2, we show vari- 5
ous possibilities. In(@), the small branch in the middle is ﬁ-( p ~  Coy ﬂ): eI T

i iti 19 g g—Coz=—InL/l. (25
actually reducing the competition of the two outer branches, 2 t 2
while in (b) and (c) the competition of the two larger
branches is enhanced. To determine which of these effects Ehis yields the 8 function, taking into account velocity
stronger requires a calculation. renormalization,

g="P,9T, (24)

1
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c 2 g2 iterated conformal mapsl8,12 is used, using “strike map-
B(g9)= 59-Caz5+Cc . (26)  pings” [18] to obtain branches of vanishing aspect ratio, and
P1 v computing the Jacobian at the tips by appropriate regulariza-
tion.
To evaluatec,, as well asc in Eq. (20), we must turn to a To obtain dynamics in the scaling regime well below the

numerical renormalization group as discussed in the nexhacroscopic cutoff, we simply take this cutoff to infinity,
section, summing over different possible branch creatiofyhich poses no difficulty in a conformal mapping implemen-
events. We will numerically evaluat®,(t) for a fixedt  tation of the reduced model: the surface that is mapped onto
>|/v, and then use the scaling arguments given here to olthe growing cluster is the real line, while the map-z? is

tain P,(t) for any t and get the lowest ordes function.  ysed to produce a single growing tip as an initial condition.
Similarly, ¢ can be obtained by considering only one set ofTo evaluate the3 function, we run the simulations until the
initial conditions after the tip-splitting event and using scal-two most active branches become more than a large, but

ng argument_s.“The RGlre_qullres numerical r\]/vork, but résinite distancd apart. Of course, if it were not necessary to
mains essentially an analytical treatment, in the same Seng@ orm the calculations numerically, this distance would be

(r)a];ttgzltg V{Il:]?(fl’?%? ;g(r: %/e:)r;russ ;(zﬁgggzi gg, t\ﬁgft;enﬁ\i ttr(])escaI%Tr?]lIé;?;g:exsiq%ly' this function can be obtained in closed
L or until timeL/v. The second definition is what is needed

to determine the number of branch pairs in the system. At F(z)=2z?%z>—5)*"5. (27
time t after the first tip-splitting event, let there be a second

tip-splitting event, so that one of the second pair of branche¥he strike mappings take a particularly simple form in this
survives only for a timé¢’ much less than Then, when the  geometry. We havé(z)= JZZ—\. Using the shape of the
two remaining branches reach separatigra timeL/v +t’ map F(z)«<F;(z—z)? near the tip, this increases the length
has elapsed, rather than a tiaév. We will find that, de- ~ Of the branch byF;\. The regularized value df'(z) near
pending on which definition of is used,P,(t) will differ by ~ the tip is JF;, but\ is taken proportional toF'| ~2, so that

an amount of ordet’/L. Note that this is independent of W€ produce strikes of constant length in the physical plane.
differing from the form we have assumed in E@3). This With this geometry,.the program runs significantly quter
yields a change if dtP,(t) independent of, and of order than such a program in radial geometry, due to the simple
t’; integrating over initial conditions for the second branch-form of the map funct|_0ns. Itmay be_worth Investigating this
ing event will yield a logarithmic correction tgdtP,(t). as a means of speeding up simulations using the conformal
However, since the velocity is renormalized, there is an agMapPping model.

ditional term in theg function for the first definition, equal '[Eeterrors detJe t;)hdlscregzatlfo? can lt:)e sutrr;l)rlsmgly Iar?e,
to g2c/v, which gives the same correction Ry(t). How- S0 hat even after thousands of ime steps there are notice-

ever, we will not need to consider this complication, becaus@ble' thQUQh small,_ dev!atlons from the linearized braf‘?“
) , ~ ) ) . competition dynamics discussed above. We have verified
for fixedt” and largeL, the change ifP,(t) is negligible and 5+ these errors are reduced as the discretization is reduced,

this is the regime in which we perform the numerical calcu-p \+ \we have had to make some compromises to obtain a
lations. sufficiently fast program.

_ Similarly, there may also be slight differences in the defi- ob%/ain apra%ge of different initial conditions for
nition of g between requiring that the branch pair grow until yranches after splitting, we use the discretized version of the
height L or until separation L Although at long times the reduced model, but we introduce a factdhat multiplies the
surviving branch pair grows with the characteristic 72° growth velocity of one of the daughter branches on ftrst
angle, and the height and separation are related, there cafep after splitting. When this factor is close to 0, that daugh-
again be deviations in the separation by an amount of ordeer tends to lose; when it is close to 1, that daughter tends to
1/L. If the present work, concerned with the stationary re-win; a balance arose whéiis nearf,~0.278. We are able to
gime in the cylindrical geometry, is extended to the affinestart the branches sufficiently close that they compete
regime, perhaps these deviations in separation will be fountbughly equally for tens of thousands of growth steps.
to be connected with different scaling in the horizontal and As discussed above, we fix the tihef the second split-

vertical directions. ting (chosen to be 500 steps for each of the two branches
pick one of the two branches to split at random with relative
VI. NUMERICAL RENORMALIZATION GROUP probability equal to the relative growth measure on the tips,

and then evolve the three branches. Typically, for the two
The reduced model was implemented numerically in amost active branches to obtain the chosen separation requires
discrete version, such that the program alternates betweest order another 3000 growth steps per branch.
growth tips on different time steps, advancing each growth We wish the initial conditions for the second tip-splitting
tip by an amount proportional to the growth probability mea-event to have the same microscopic cutoff as for the first
sure. To solve Laplace’'s equation quickly, the method ofip-splitting event. In order to do this, the same mapping of
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Eq. (27) is used for both tip-splitting events, with an appro- The constant in Eq. (20) is obtained by evaluating a
priately scaled value of, and the overall velocity scale after process with a single tip splitting. We consider the change in
the second tip-splitting event is chosen such that those twbeight of the dominant branch of the pair as compared with
daughters initially have the same step size in pigsical the height of a branch without splitting. The simulation of
planeas the two daughters after the first tip-splitting event. the branch pair was run for approximately 50 000 steps per
We tried two methods of handling the integration overbranch. The change in height fits very well the foen
initial conditions. First, a Monte Carlo technique: initial con- —C1/+t, with ¢; some other constant; using this form we
ditions are chosen randomly and we count the fraction ofvere able to obtain the asymptotic change in height by ex-
initial conditions that give rise to a surviving branch pair. To trapolation. This quantitg can be obtained much more ac-
speed the Monte Carlo calculation, we sampled only a subsétirately tharc,. . _
of initial conditions, chosen to include all conditions that YSing Eq.(20) evaluated at the fixed point of E(R6), |
could give rise to a surviving pair. By having the program Nave obtained that
randomly choose which of the two branches after the second D~0.46¢ 29)
branching event would get the first growth step, we ensured T

that the distribution of initial conditions for this event was Using different estimates for the range of initial conditions
symmetric between the branch growing inward and thepver which to integrate, | have obtained a lower estimate of
branch growing outward. The Monte Carlo technique suf-D~0.40¢ and an upper estimate @f~0.51¢. | then com-
fered from the problem that, to obtain a sufficient number ofpared these results to the dimensions obtained numerically
surviving branch pairs in the available computer time, we[12]. The RG result seems high, for aj=3 we have
had to adopt a fairly broad definition of “surviving” and D=0.26 and atp=3.5 we haveD~0.16, where these re-
keepL finite. The correct limit for the renormalization group Sults are obtained by subtracting unity from the dimensions
. ~ e in radial geometry. However, fitting the dimensions obtained
is to takeL>1. In this limit, it does not matter how the

i o ) . numerically forp=0,1,2,3 to a polynomial i=, | found that
survival of a branch pair is defined, but for finitewe more  the |owest order result is

closely approximate the desired results if we take the defini-
tion of survival to be very narrow, so that the two branches D~0.45%, (29
must be almost identical in growth measure. This was ac-
complished by manually searching for initial conditions thatin good agreement with the RG result. | did not include
gave rise to a surviving branch pdivith an extremely nar- n=3.5 in the polynomial fit as this dimension is known less
row definition of survival so tha® for the two surviving accurately than the others and has an inordinate effect on the
branches was almost exactly zeemd numerically comput- lowest order term ire; taking D=0.17 at=3.5 leads to
ing the derivative of with respect to the initial conditions to D~0.48¢, while takingD =0.16 leads td~0.41e.
obtain P, andP,,. Let us now consider the multifractal spectr{i20,21]. Let

If we fix the initial conditions of one of the tip-splitting X be a point in the physical plane, with=F*(x). The
events to produce a very asymmetric pair of daughters sbarmonic measure if=’'(z)| " *dx=dz Define p(x) to be
that after a brief time only one daughter survives, and choos#e normalizedharmonic measure
the initial conditions of the other tip-splitting event ran-

domly, the probability that a branch pair survives to sdale o(x)dx— [F’(z)|~*dx
must approactP;. Due to the discretization errors in our , o1
program, this probability is within a few percent Bf;, but f (dx'/HF"(Z')
not exactly equal t@,; we have verified that this difference

also disappears as the discretization is reduced. The numegnd the exponents(q) by

cal evaluation ofP,— 2P, suffers from the problem that the

large contributions resulting from the very narrow region dx . |\ @
where all three branches compete may be swamped by small f |_p (X)) = L '
errors over the large region of all other initial conditions.

Thus, we have had to adapt some criterion for determiningvhere the angular brackets denote averaging over realiza-
what range of initial conditions to integrate over. This nec-tions of the cluster. For an isolated branch in cylindrical
essarily introduces some error and makes our results for thgeometry, if we pick a parametrization such thtz) o z?

B function somewhat subjective. It is hoped that improvednear the tip, then the denominator of EGO) is of order
numerical techniques will at some point improve this situa—\/E/I_ Forqg>2 the integral of Eq(31) is divergent near the
tion. One reason for the difficulty is that the processes in Figtip and is cut off at length scale For 0<q<2 this integral

2 contribute to the3 function with different signs. Another s divergent away from the tip, and is cut off at a physical
reason for these small errors is discussed at the end of thength scald., when the power law behavior of the electric
last section in terms of corrections of ordet Which are field crosses over to an exponential decay. §&0, these
logarithmically divergent when integrated over initial condi- exponents are ill defined in this geometry. For an isolated
tions for the second surviving branch pair; perhaps using &ranch, we haver(q)=q/2 for g>2 and 7(q)=q—1 for
different definition ofg will improve the situation. q<2.

: (30

(31)
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It is also possible to compute corrections to the multifrac-  Further, with this choice, the dimensions will automati-
tal spectrum in the RG. Various multifractal exponents maycally obey the electrostatic scaling 1d&4] order by order.
be defined, including quenched and annealed expofh22ts This scaling law adapted to cylindrical geometry is
It has been arguefR3] that asymptotically all these expo-
nents are identical for DLA, but that for finite size systems 1+D=1(2+5)— (7). (35

the apparent exponents may be quite different. The differenth | ic law is obtained. in thi b .
exponents all involve different ways of choosing how to | N€ €lectrostatic law is obtained, in this geometry, by noting

weight different realizations of the cluster when pen‘ormingthat the growth velp_city is proportional to.the average, using
the average in Eq31). Within the RG framework, we need the growth probability measure, m"over tips: this average
to have a multiplicatively renormalizable operator in order toSc@/€S asr(2-+7)— (7). Since this relation between the
obtain power laws from the lowest order computation. Thisdrowth velocity and the average afholds for each branch
requires choosing the correct set of exponents and the corregpnfiguration separately, it holds for the exponents as we
average, as will be discussed below. have defined the average above.

Let us first consider corrections te(q) for q>2. The We have obtained the lowest order results that
integral of Eqg.(31) must be summed over all configurations
of the cluster. The configuration with only one branch gives
the zeroth order result. Ldtp? for the configuration with a 4)=2+07D, =(3)=15-02D (36)
single branch be equal ®,(q). At first order ing one must ' R
sum over configurations with two branches also. One musjye report these results in termsBfby using Eqs(20) and
integrate [p9—P, over the full trajectory of the two (33) as these calculations are more accurate than that for Eq.
branches, starting with the two branches almost equal angg). Note that even at lowest order inthe 7(q) spectrum
continuing until one branch has completely won out. Thisgoes not have any simple form such as a log-normal distri-
trajectory can be obtained numerically. Note that the integrapution or gap scaling. By looking at larggrwe find that the
of p%(2) will be dominated by the field near the tips, and soTurkevich-Schef25] scaling law does not hold as an equal-

7(6)=3+1.7D, (5)=2.5+1.3D,

it suffices to knowF; at each tip: ity in this expansion. It holds only as an inequality.
For 0<q<2, a similar calculation can be performed, al-
dx 0 [ q/ZE —q2 though it will be slightly more complicated as the integral of
TP (x)= L i P (32) p9(z) is no longer dominated by the tip and must be consid-

ered over the full branch. Further, the cutbfbf cylindrical

Suppose the integral over the branch trajectory f@f  geometry must be kept finite, rather than being taken infinite
—Py(q) is equal to—txP,, wheret is the time the two @S We have done in the calculations above, to keep the inte-

branches exist. Integrating over initial conditions of the twodral of p? finite.

branches, we have that the left-hand side of B4) is equal One further complication is that(q) is not an analytic
to function of 4— % nearq=2. The 7(q) above correspond to

an f(a) spectrum with two pointsf=0.5a¢=0, the zero-
a/2 dimensional set of singularities near the tips, dnel,«
(E) (Pog—xgPgInL/I+---) (33 =1, the rest of the branch forming a one-dimensional set. As
n decreases, the singularities near the tips soften while the
giving 7,(q) = q/2-+ xg. dimension of the set of tips increases, and the functiar)

How should we perform the integral over the branch tra-PECOMes a curve rather than a set of discrete points. The

jectory? Each configuration along the trajectory correspondrsunctlon 7(q) above is not analytic irg as for q>2 the

q; : d : L
to a different realization of the cluster, and, depending Or{ntegral of p is dominated byx=0, while for g<2 it is

how we choose to weight different realizations, we mustdominated byar=1. Similarly, for fixedq near 2, asy is

weight the integral over the trajectory differently. We choosed.ecre"’lsed the value af, which CoerIST(q.)’ may jump

to weight the integral by d|scont|r_1uously from near 0 to near 1, or vice versa. It may
be possible to surmount this problem by expanding the left-

hand side of Eq(31) in q—2 and trying to resolve the loga-

-1
2 \/F—i_ 77) dt, (34 rithms that result as a sum of different power laws.
i

. . . VIl. RENORMALIZABILITY
which corresponds to changing the time scale such that each

branch grows at a rate proportional{&; ~ 7, rather than that Clearly, it will be very difficult to prove renormalizability,
given by Eq.(4). However, this is exactly what happens with since we find it difficult to evaluate even lowest order pro-
a large number of branches if one of the branches splits: igesses, but renormalizability is essential for the RG we em-
this case, the denominator of E@) involves contributions ploy. Further, if we prove multiplicative renormalizability
from all branches and is insensitive to the splitting on thefor the theory with two parametetsg, then the fractal na-
single branch, so that we expect that this choice of weightingure of the DBM cluster will follow without any detailed
function will define(fpY) in a manner that is multiplica- calculation of$ functions: it is clear that has no effect on
tively renormalizable. the RG flow ofg, and if g has an attractive fixed point then
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without fine-tuning the theory must arrive at a critical point divergent renormalizations of andg. However, by expand-
with nontrivial exponents. If instead had a repulsive fixed ing in t; /t, as above, we again obtain the desired result that

point, we would observe very different critical behavior: for the |ogarithmically divergent terms depend only on the loga-
7>4, there would be a phase transition in the behavior ofjthm of the ratio oft, /t; .

the system as a function of the bare coupling constant from Tpege arguments sketch the renormalizability of the

one dimensional to fractal; the bare coupling constant COU"{‘heory. One must also show, for example, that there are no

perhaps be adjusted using a noise reduced version of thgyergent contributions to the rate at which one branch splits
model. Also, for fixed bare, there would be a discontinuous o three.

change in the dimension of the cluster as a functionr;.of Also, in defining the reduced model, we ignored shot
fromD>0toD=0. So let us sketch how such a proof might pgjse in the velocity of a given branch; however, the process
proceed_. ) ) _ of tip splitting, which renormalizes the average velocity, will
_ Consider a collection of competing branches with separareintroduce some noise in the velocity. The noise in the ve-
tion distances of ordet ;. Let one branch have a single |ocity of a branch is irrelevant at long time; fortunately, then,
tip-splitting event such that after a tin¥, only one of the  \hjle the renormalization of velocity is logarithmically di-
two subbranches survives, withl,;<L;. While both sub-  yergent, the rms fluctuations in the velocity are convergent at
branches survive the total grOWth measure on the pair is I'&hort times, beha\/ing d$ak|ng the branch pair to survive
duced compared to that on the subbranch, but at times mugBy time t) f(dt/t3)t2.
greater thanT, the growth measure of the surviving sub-  |n the continuous model§ increases in time, and the
branch asymptotically approaches that of the parent, and @opability of havings=0 decreases in time, such that this
scaleL, it seems simply as if the branch with the tip-splitting probability, multiplied by the branch length, remains con-
event had grown with a renormalized velocity for a brief stant. Consider now the case of a discrete formulation of the
time. After integrating ovefT,, the renormalization of the model, to see the effects of shot noise or other fluctuations in
velocity is of order I, /I. the velocity. Suppose two competing branches have lengths
It would be disastrous if instead there were a logarithmicy + 51— 5. Take a discrete growth step, adding lengéhta
divergence that depended &n, such asL;InL,/l, as this  one of the branches, with probabilities /2. The probabil-
would change the growth rules of the theory and the mannggy of having the two branches symmetrically distributed af-
in which branches compete. However, since we are interter the discrete growth step is . If the initial configu-
ested in the divergence 85— 0, we can restrict ourselves ration of § is chosen uniformly neab=0, we find that the
to vT,<L, and formally expand the growth velocity in a probability of havings=0 is again decreased with this prob-

power series 06 T, /L, (this is possible since, fof, small,  apjlity, multiplied by the branch length, again remaining
the influence of the branch pair on the other branches igonstant to linear order id. To second order i we will
smal), so that the growth velocity is find differences between the continuous and discrete models.
One can do a similar calculation for the case in which the
2 f &ak(vTZ/Ll)k- (37) growth of a branch stagnates due to a tip-splitting event. The
K T> probability of a given branch having a tip-splitting event is

1/2+ 6, while the tip-splitting event will slow that branch for
The zeroth-order term in this series yields a logarithmic di-a time 1/2r § during which the other branch grows at a
vergence of desired form, while the higher terms are notelocity 1/2+ 5. Again one can show that the probability of
divergent. having §=0, multiplied by branch length, remains constant,

It would equally be disastrous if the growth measure oftg |inear order in the time of the tip-splitting event.

the surviving subbranch were not to asymptotically approach This comparison between continuous and discrete models
that of the parent. However, this follows from properties ofjs why we emphasize that the rms fluctuations induced by tip
Laplace’s equation: at long times the surviving tip is at asplitting are convergent. Suppose instead that the rms fluc-
height much greater than the dead subbranch, and the degghtions were not convergent. Then, one would find in Figs.
subbranch ha_s _only_a small effect on the growth probabilitie$(g) and 2b) that c, was divergent when integrating over
near the surviving tip. initial conditions for the second branching event, which

This show that processes with a single branching jusfyould lead to divergences of the form ()2 destroying
renormalizev. Consider several branchings. Each set ofrenormalizability.

branchings is defined by a tree diagram indicating the topol-
ogy of the branchings, and a set of time#dicating the
times at which branching take place as well as a set of initial
conditions for each branch pair. To the initial conditions cor- We have presented the lowest order inean4 — 7 expan-
responds another set of times, the times that the two branchegn, obtaining good agreement with numerical results. For
survive. For fixed topology, one must integrate over thesenore accurate comparison with DLA, for whief+ 3, exten-
times and evaluate the average rate at which the clustaion to higher order with further branching processes is nec-
grows or produces branches. Let us order the times fromessary. Due to the need for numerical techniques to evaluate
smallest to largest, and send groups of these times to zero. dfven lowest order processes, it is unclear if higher order
a set of timeg; are sent to zero together, with some otherterms can be computed accurately.

timest, being held fixed, one finds, as above, logarithmically It is also necessary to improve the numerical evaluation of

VIIl. CONCLUSION
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lowest order processes. To numerically simulate the reducefdr the DBM, which would prevent the existence of an upper

model, some discretization and cutoff is necessary. We haveritical 7.

used a particular cutoff, but perhaps other cutoffs are prefer-

able. Indeed, the discrete random walker formulation of the

DBM provides another cutoff that may lead to more accurate ACKNOWLEDGMENTS
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